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Outline

• Process Overview
• Aerothermal Analysis & Design Process

– System design requirements
– Aerothermal boundary conditions
– Candidate material technologies
– Analytic model development
– Preliminary flight design
– Ground aerothermal testing
– Flight design/verification and validation

• Analysis and Design Methodologies
• Summary
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Process Overview
• Define system requirements

– Environments
– Material technology (TRL)

• Airframe, nozzle, fins/leading edges, radomes/IR windows
– Internal components

• Electronics, propellants, fin root bearings, seals
– Weight/Cost

• Conduct component level  & system analysis & 
design (shape, material, trajectories)

• Conduct ground test and evaluation to validate 
component design models

• Perform flight design
– Instrument flight system to further validate analytic 

models
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Aerothermal Analysis & Design Process
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System Design Requirements

• Reusable/single use
• Fabrication/manufacturing cost
• Schedule (TRL requirement)
• System integration
• Aerothermal environment (thermal, pressure, 

surface reactions/catalysis) 
• Rain/sand requirements
• Flight time
• Storage/transportation/environmental extremes
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System Design Requirements
• Airframe/structure operating temperature

– Metallics <1000°F (811 K)< Refractory metals 
– Ceramics/Ceramic Matrix Composites > 2000°F (1367 K)
– Ultra High Temperature Ceramics (UHTC) >3000°F (1922 K)
– Composites (anisotropic properties)

• Graphite epoxy < 350°F (450 K)
• Cyanate ester (PT-30) < 550°F (561 K)
• Pthalonitrile < 1100°F (867 K)

• Leading edge/control surface
– Durability (rain, cyclic heating, reusable)
– Thermal expansion and insulative ability
– Strength at temperature
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System Design Requirements

• Geometries of interest
– Shape (stagnation, conical, flat, wedge, leading edge, 

incidence angle)
– Substructure (operational temperature limits)
– Weight/volume constraints

• Aerothermal environment
– Trajectories (velocity, altitude, angle of attack,time)
– Flight geometries
– Recovery enthalpy/temperature
– Local aerodynamic shear & pressure
– Local heat flux (transient/integrated)
– Ionization/plasma potential
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Aerothermal Boundary Conditions

Phenomena which must be quantified
– Boundary layer

• Blowing (if applicable – decomposing materials)
• Velocity/temperature gradients
• Thickness

– Shock interactions/effects
• Enhanced heating due to shock attachment (shock jetting)

– Ionization (induces RF blackout, catalycity)
• Sodium/Potassium/air

– Recovery conditions (enthalpy, temperature)
– Convective heat transfer (wall shear)
– Real/ideal gas effects



August 20, 2003 9

Candidate Material Technologies

• Thermal properties (temperature/directional 
dependent)
– Thermal conductivity/specific heat
– Density (weight limits)
– Decomposition (char/pyrolysis)
– Ablation product species, ionization potential, catalytic 

efficiency
• Mechanical properties (temperature dependent)

– Strength (shear)
– Strain (motor growth/bending)
– Durability (impact, environmental extremes, …)

• Reusable or single use
• Cost/manufacturability/TRL
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Analytic Model Development

• Reusable technologies (NASA) – Aeroheating + FEA 
Codes

• Non-reusable (DoD) – Aeroheating + Decomposition + 
FEA Codes
– Simplified approaches if applicable

• Conduction models (unreliable if significant decomposition or 
ablation)

• Simplified heat of ablation/Q* models (requires significant test data 
for specific environment of interest, limited use)

– Complex charring material models
• Application to wider range of environments 
• Requires characterization of complex phenomena
• Decomposition (char/pyrolysis/intumescence)
• Mechanical erosion/thermochemical ablation
• Properties dependent on temperature/char state/direction
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Preliminary Flight Design
• Perform predictions with available material models

– Aerothermal response (CMA)
– In-depth conduction (FEA)
– Note: Models may not exist or need development

• Develop understanding of expected material 
phenomena/behavior for flight

• Rank material performance (both TPS & Structure)
– Volume/weight constraints for required thickness 

(substructure temperature limits)
– Application process (spray,trowel,mold,sheet)
– Cost
– Availability
– Technology readiness level (flight qualified?)
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• Ground test simulation of flight conditions
– Match aeroheating

• Heat Flux (calorimeter)
• Shear
• Pressure
• Recovery conditions

– Configuration (test rhombus)
– Instrumentation
– Screening tests

• Facility availability
• Test cost

Ground Aerothermal Testing
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Flow
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Ground Aerothermal Testing
• Material performance characterization tests

– Identify phenomena to characterize
• In depth conduction (thermal properties)
• Decomposition
• Erosion/thermochemical ablation
• Surface temperature
• Thermal expansion & durability

– Select facility to characterize phenomena of 
interest

• Thermal properties (thermal response)
• Decomposition
• Mechanical Erosion/Intumescence
• Ionization/plasma
• Heat flux/surface temperature response
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Char
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LayerFree Stream Flow
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Instrumentation
• Calorimeter matching test specimen
• Heat flux

• Thin skin
• Plug calorimeter 
(copper,steel,water cooled)
• Heat flux gage (Schmidt-Boelter, 
Gardon, Null Point)

• Flow field (pressure, temperature,   
boundary layer)

• Embedded thermocouples
• Infrared surface temperature 

(wavelength, emissivity)
• Erosion rate sensors
• Chemical species/injection
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Instrumentation

Transition Occurrence
• Altitude/velocity/AOA
• Surface roughness
• Critical for aerothermal 

boundary condition 
definition

Gage
Onset 

Indicator
Measures 

Q

Map 
Transition 

Front

Measures 
Turbulent 
Level Q

Cost
TM 

Bandwidth

Delta-T yes yes yes yes low low

Standard Calorimeter yes yes yes no low low

Ported Acoustic yes no could no high high

Unported Acoustic yes no could no med med

Base Pressure yes no no no low low

Accelerometer yes no partially no high high

Turbulent

Laminar

Table by Astrometrics
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Onset of Boundary Layer 

Transition Altitude

Minuteman Launch

Minuteman 
Re-entry Vehicle Quad Isothermal Plug Thermocouple 

To Determine In-Depth Temperatures

ARAD sensor to measure the char virgin interface recession history

Transient Recession Rates

Non-Intrusive Embedded Thermocouples

Transition Occurrence

DOD Aerospace “Off-the-Shelf”
Heat Shield Instrumentation

Instrumentation Charts provided by John 
Cassanto of Astrometrics (610) 280-0869
AstrometricsJMC@aol.com

Instrumentation
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InstrumentationTypical Flight System Instrumentation
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Minimum Flight Instrumentation 
Requirements

• Transition sensors (boundary conditions)
• Ablation sensors (heatshield response)
• Multi-element embedded plug TCs (TPS)
• Temperature probes (internal components)
• Backface structure temperature sensors
• Antenna window temperature sensors
• Dual range pressure transducers
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Flight Design Verification and 
Validation

Utilize validated computational model developed from 

ground test data to refine system design

• Material requirements

– Predicted thermal response

– Predicted surface removal/intumescence

• Substructure response (thermal/structural)

• Flight instrumentation requirements

• Telemetry capability (RF signal effects due to ablation 

products)



August 20, 2003 20

Flight Design Verification and 
Validation

• Data reduction

• Final computational model refinement

• Predictions for full range of possible flight 

requirements

– Ground tests cannot always fully match flight

– Flight tests don’t always impart worst case flight
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Analysis and Design Methodologies

• Summary of Methods
– Engineering Methods
– Complex Flow Field Analysis

• Analytic Codes
– Aerothermal Boundary Conditions
– Material Response
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Summary of Methods

• Engineering Methods are relatively efficient and can 
provide a means of obtaining first order boundary 
conditions for simple configurations
– Panel methods
– Streamline tracing
– Equivalent running length
– Convective transfer expressions (Conical/flat plate/sphere/cylinder)

• These methods can be supplemented with more complex 
flow field solutions to assess and correct pressure 
predictions and recalculate heat transfer coefficients

• Engineering methods also provide efficient transient 
thermal response and boundary condition predictions with 
material shape change/ablation

• Results can be integrated with FEA models for more 
complex 3-dimensional conduction effects
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• Computational fluid dynamics (CFD) codes 
may be used for complex and/or chemically 
reacting flows

• Transient flow field predictions are generally 
not possible due to
– Length of solver run times
– Cost of discretizing domain for 3D geometry (grid)
– Inability to efficiently consider transient wall 

temperature or ablation response
• Predictions are generally limited to a few points 

in trajectory/time
• Used in a tabulated manner for verifying and 

modifying engineering method predictions

Summary of Methods
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Engineering Methods

• Shape change
• Streamline tracing
• Surface pressure
• Shock shape
• Boundary layer flow
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Shape Change

• Geometry definition
• Freestream properties
• Inviscid flowfield 

• Surface pressure
• Shock shape

• Boundary layer heating
• Material response and ablation
• Change in the geometry of the 

vehicle
• Particle impact erosion
• Coupled shape change /

flight dynamics
• In-depth thermal response

Other factors – Efficiency 
Robustness Accuracy

Inviscid flow

Boundary layers

Ablation

Shape change

Flight 
dynamics

Particle 
impact
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Streamline Tracing

• Axisymmetric analogy for 3D flowfield predictions
• Assumes no flow crossing a streamline
• Modeled as an axisymmetric solution
• Body radius replaced with the metric coefficient

• Streamlines calculated using method of steepest descent
based on the Newtonian approximation

• Newtonian flow model assumes that a stream of particles
(air molecules) impinging on a surface retains its tangential
component of momentum
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Surface Pressure
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Shock Shape

Thin shock layer approximation for bow shock solving the global
continuity and axial momentum equations.  Integrands
Approximated by linear distributions between the body surface
and the shock.

p

  u

vR
u ∞

rwr

δ

y

Bow Shock
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Boundary Layer Flow
Entrainment relation - means of determining boundary conditions 
for the solutions of the momentum and energy equations.  Edge 
state determined by lookup on pressure and entropy in a real-gas 
Mollier table. Pressure taken from inviscid pressure correlations 
and entropy is calculated by balancing mass entrained into 
boundary layer and mass crossing bow shock.

B o u n d a r y  l a y e r
e d g e

ρ e u e s t r e a m l i n e
ρ     u

y
ρ w v w

∞∞
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Boundary Layer Flow

Transitional Boundary Layers:
Transition from laminar to turbulent flow is modeled through the
use of the Persch intermittency factor.  Once the transition criteria
is met, MEIT calculates both laminar and turbulent solutions and
uses this factor to determine the actual state of the boundary layer.
The parameters Cf, Ch,  H, F, and R are determined by the expression:

tPfPfP +−= l)1(

where f is the intermittency factor defined by:

)(Re
1

,,
2

lftf CC
f

−
−=

θ

α
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trftftr CC )(Re ,,

2
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Boundary Layer Flow

Influence Coefficients:

• Basic laws - represent simplest flowfield developing a
boundary layer (incompressible flow, smooth wall, isothermal,

impervious, irrotational inviscid flow)
• Assumption - laws can be modified to account for nonideal

phenomena through use of influence coefficients
• These factors generally derived by comparing convective

transfer with the ideal flat-plate result for the same
boundary layer state.

• The factors are derived for only one nonideal mechanism
at a time
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Boundary Layer Flow

∏ ===
z

zyxyxyx tyfhxICC ,and,for,,0,,, l

where Cx,y,0 refers to the basic law for incompressible flow along
an impervious, isothermal flat plate

x indicates heat, h, or momentum, f, transfer
y indicates laminar, l, or turbulent, t, flow
z indicates the nonideal effect being considered

β, acceleration
B, blowing
p, property and Mach number effects
r,  roughness effects
tr, transition proximity

It is assumed that the Stanton number, Ch, and the skin 
friction coefficient, Cf, can  be written as:

Method utilized in ATAC3D - Influence Coefficients:
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Complex Flow Field Analysis

• Required due to geometry and/or flow physics
• Geometry complexity creates flow complexity

–Shock-shock interactions
–Shock-boundary layer interaction
–Wakes
–Expansion waves
–Flow separation/recirculation/reattachment
–Chemistry/surface reactions
–Flow injection

– Engineering methods used to identify regions where 
CFD is required
– CFD utilized to provide refined boundary conditions 
for engineering methods
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Analytic Codes for Boundary Conditions
• Engineering Methods

– ATAC3D/MASCC
– Miniver/Lanmin
– IGHTS/RGHTS
– Bell Aeroheating Handbook

• CFD
– Aerosoft - GASP
– CFDRC - Fastran 
– Fluent
– Giants/LAURA (NASA - Axisymmetric)
– KIVA
– CFDL3
– Overflow
– WIND

• Coupled Design Codes
– IHAT (Miniver/ATAC3D/Overflow)
– Giants (TITAN, GIANTS, MARC-FEA)

Turbulent

Laminar

surface plot

Fineness
Ratio

Inlet
Position

Missile
Length

Inlet Height,
Width & Standoff

Fin Span, Sweep,
Taper, Chord,

& Position

Diameter

Figure 2 :  Air Launched Low Volume Ramjet configuration used as a validation test case. 

Figure 7:  Low-fidelity aerodynamic grid. 

Figure 10:  High Fidelity Aerodynamic Solution (Pressure coefficient at Mach 2.5, α =0°) 



August 20, 2003 35

Comparisons with Pegasus Flight Data

• First Pegasus flights included instrumentation to measure interface temperatures
on the wing, fin, and wing fillet.

• Previous analytical models of Pegasus considered the fuselage, wing and fins as
separate entities.  The current model includes the entire configuration.

• Calculation modeled the first 82 seconds of the flight, up to first stage burnout
• 64 complete flowfield solutions were obtained to model the variation of the freestream
conditions during the flight. 

CURRENT PEGASUS MODEL

HEAT FLUX CONTOURS
AT THE END OF THE
FLIGHT
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CFD Solution with Adiabatic Wall

Trecovery

CFD Solution with Fixed Twall

Heat Flux

3D Thermal Analysis Stress Analysis

CFD, Thermal  & Structural Modeling
Process for Complex Vehicles Shapes

Pressure

Temperature

Distribution

Other BC’s

• Time-dependent heat flux and Trecovery interpolated from CFD mesh to thermal mesh.

• Time-dependent pressure distribution interpolated from CFD mesh to structural mesh.

Coupled CFD/Aerothermal Analysis

Technical POC: Rick Burnes Naval Air Warfare Center, BurnesRR@navair.navy.mil
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Missile Aeroheating
& Shape Change Code

I-DEAS TMG
Thermal Solver

TrajectoryGeometry/Mesh Geometry/Mesh/Materials/Initial BC’s

Missile Skin Temps

hconvective , Trecovery

• At each thermal solution time-step in a transient analysis:
– Missile skin temperatures and time-step passed to MASCC
– MASCC computes hconv and Trec using missile skin temperatures and
– trajectory for current time-step.
– Heat load on each surface element in thermal model at current time-step
– computed using: Qelement = (hconvective)(Aelement)(Trecovery - Telement)

Fortran User Subroutine Compiled & Linked to TMG

Coupled CFD/Aerothermal Analysis
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Analytic Codes for Material Response

• Charring Material Model
– CMA (Aerotherm)

• CMA87: Charring Material/Ablation
• CMA92FLO: CMA87 + Pore Pressure

– Numerous independently developed codes
• FIAT: 1-D NASA Charring Material Analysis
• TITAN: 2-D NASA Charring Material Analysis

• Q* Model
– Simplified Heat of Ablation Model (modified Q* model)

• Conduction Models
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Charring Material Models
• Modeling Capabilities

– In-depth decomposition
– Conduction
– Thermochemical ablation
– Fail temperature model for mechanical erosion
– Pyrolysis gas generation and injection/blowing
– Addition of intumescence for conduction effects

• Application
– Generally required for decomposing materials to obtain 

accurate in-depth thermal response
– Applicable to a wide range of environments once material 

thermodynamic model is developed
• Limitations

– Requires specific material property data such as kinetic 
decomposition constants, temperature dependent properties 
of char, pyrolysis, and virgin material, and heat of 
decomposition
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Charring Material Thermal Response and Ablation and 
Model (CMA)
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RX2390 TGA-DTA 50°C/min 2/20/00
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CMA Intumescence Model Development

Substrate
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Pyrolysis

Char
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Recession
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Boundary Layer
Free Stream Flow

Surface Shear
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Intumescence Behavior

Pretest Thickness   =0.3”
Char Depth =0.13”
Pyrolysis Depth =0.09”
Virgin Material =0.2”

Depth
Posttest Thickness =0.42”
Intumesced =120%

.420”.420”

.13” CHAR.13” CHAR

.20” VIRGIN.20” VIRGIN

.09” PYROLYSIS.09” PYROLYSIS
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LHMEL Test Configuration

RTR device

Wind tunnel

exhaust tunnel

calibration block

sample holding fixture

RTR device

Wind tunnel

exhaust tunnel

calibration block

sample holding fixture

RTR device

Wind tunnel

exhaust tunnel

calibration block

sample holding fixture

LHMEL Facility

Test Hardware

Heatshield Samples Mounted Heatshield Sample
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Posttest Samples
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LHMEL Radiography Results

Thermocouples

Final Surface
Position

Density Reference

Aluminum Substrate

Initial Surface
Position
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LHMEL Digitized RTR Results

CT Scan Data
RX2390-S
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Comparison of Non-Intumescing and 
Intumescing Model Predictions 
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NASA HGTF Low Shear Hypersonic Tests
Phase 1 Cold Wall Conditions

Twall=70°F
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Model Thermal Predictions for HGTF Test
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NAWC T-Range Ablation Tests
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HHSTT High Shear Test Configuration
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Coupled Intumescence and Mechanical
Erosion Modeling
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Q* Models
• Modeling Capabilities

– Ablation measured to virgin/pyrolysis interface(ablation 
temperature, heat of ablation)

– Conduction
– Blowing for sublimation process
– Simplification of required input parameters

• Application
– Generally applicable to materials/environments with high 

mechanical erosion/ablation
– Not appropriate for highly decomposing/intumescing materials

• Limitations
– Requires ablation performance test data for heating/shear 

environment of interest
– Can provide misleading results if extrapolated to other 

environments
– Does not necessarily provide realistic surface temperature response 

or physical surface removal prediction (simplified heat of ablation 
model)
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Heat of Ablation Model Development
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Typical Heat of Ablation Model 
Development
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Ha Ta for Phase 1
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Time (sec)

Typical Heat of Ablation Model 
Development
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Conduction Models

• Modeling Capabilities
– Conduction
– Modified thermal properties to account for other thermal 

response phenomena (density change)
• Application

– Generally applicable to materials/environments with no 
decomposition or surface removal/ablation

– Common approach for finite element analysis until a coupled 
ablation capability is developed

• Limitations
– Does not allow surface removal
– Does not generally account for density changes that effect 

conduction
– Can provide misleading results if used for 

ablating/decomposing  materials
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Examples of Aerothermal Analysis 
and Design

Missile 
Electronics Unit

Inertial
Measurement Unit

Control Actuator
Fin Assembly

Airframe FE
Thermal Model

Missile Electronics Unit
Card Cage

Missile Electronics Unit

Guidance Electronics

Control Actuator 
Fin Assembly

Inertial Measurement Unit

Virtual
Prototyping

Analysis/
Simulation

Detailed
Design

Simulation Based
Design



August 20, 2003 61

Optical Window
•Candidate materials analyzed

•ALON
•Sapphire
•Dynasil

•Bevel angles analyzed
•45 and 60 degree

Frame
Steel

Reflector
Aluminum

Grafoil
- Used at interface between 
Window and Frame to provide 
a seal and minimize stress.  
Also used between Window 
and Reflector to distribute seal 
pressure loads.
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Summary

• This tutorial has provided a brief overview 
of the aerothermal analysis and design 
process

• Various components of this process have 
been discussed

• A limited survey of existing methodologies 
and corresponding codes have been 
provided



August 20, 2003 63

Summary

• The goal of this tutorial was to define a general 
process in which aerothermal analysis and design 
should be conducted.

• It is imperative for the designer to consider a wide 
range of issues when conducting aerothermal 
analysis and design.

• Flexibility should be maintained during the process 
to ensure critical issues are adequately resolved 
prior to system final design.

• Engineering methods represent an efficient 
approach to design.  However, more complex 
approaches should be utilized to supplement these 
engineering methods when deemed necessary.


